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Summary 

Dicobalt octacarbonyl catalyzes the formation of acylcobalt tetracarbonyls 
and paraffins from olefins and cobalt tetracarbonyl hydride, presumably by 
generating radical species. The relative &activities of CO and HCo(CO), 
towards an alkylcobalt carbonyl determine the carbonylation/hydrogenation 
ratio. 

The reaction between HCO(CO)~ and olefins is regarded as component of 
the hydroformylation catalytic cycle in the presence of cobalt carbonyls, and 
because of the industrial significance of hydroformylation it has been repeat- 
edly studied El]. The main products of this stoichiometric reaction are alde- 
hydes and saturated hydrocarbons (at low olefin/HCo(C0)4 ratios) or acyl- 
cobalt tetracarbonyls RCOCO(CO)~ (at high olefin/HCo(CO), ratios in the 
presence of CO). 

By monitoring the CO absorption the rate of acylcobalt tetracarbonyl forma- 
tion from two olefins, heptene-1 or octene-1 (5-50 fold excess), HCO(CO)~ 
dissolved in heptane and CO at 15°C and 0.5-3 bar has been measured in the 
presence of CO,(CO)~ (eq. 1) 

RCH=CH* + HCo(CO), + CO ~ RC2H4COCo(CO), (1) 

The reaction is half order in Co,(CO), and first order in olefin. The rate 
dependence on the HCo(CO), and CO concentrations (CO inhibits the reaction) 
is more complex (see below). A significant amount of saturated hydrocarbon is 
formed as by-product, and since this results in the formation of additional 
COAX (eq. 2) initial rates were used to avoid autocatalytic effects. 

RCH=CH* + 2 HCo(CO), coz(co)s RC*Hs + Co2(CO)s 

One possible mechanism which explains the kinetic data is: 

Co*(CO)* 2 2 -Go( 

(2) 
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-COG + RCH=CH2 2 -Co(CO),(RCH=CH,) + CO 

-CO(CO)~(RCH=CH~) + HCO(CO)~ 2 HCO(CO)~ (RCH=CH*) + -COG 

HCo(CO),RCH=CH,) K=3 RC,H,Co(CO), 

RC2H4Co(C0)s 

/ F 

RC2H4C~(C0)4 
J 

(RC,H,)jH)Co,(CO), 

RC,H&OCo(C0)3 Co2(CO), + R&H5 

co. 1 co 1 
RC,H+COCO(CO)~ Co2 (CO)8 

Assuming that formation of HCO(CO)~RCH=CH~ and reaction of 
RC,H,CO(CO)~ are equal (steady state treatment), the following rate expres- 
sions can be derived for the formation of RC,H&OCo(CO), (eq. 3) and 
RCzHs (eq. 4) if [COAX] and [RCH=CH,] are constant: 

d~~G&~OW~OM = rco = 
Bk F [HCo(CO),] 

H 

dt 
2 CC01 + CHWCO),l 

~CRWM = B[HCo(CO)J”[CO]-’ 
dt 

rn = 

+[CO] + [HCo(CO)zJ 
H 

(3) 

(4) 

where B = A [COAX] o-5[RGH=CH?] and A = k,I$~5K2. 
The kinetic constants A and (kco/kH) may be determined by transforming 

eq. 3 into eq. 5. 

1 -= cc01 ; 1 

rco BWo(CO)J B kc, 
(5) 

bx 

and plotting (l/rco) against ([CO]/[HCo(CO),J). This is shown in Fig. 1 for the 
two olefins. 

The following (kc0 /kH) and A values were obtained: 

kco 

kH 
A X lo3 (mol**5 P-5 min-1) 

Heptene-1 9.6 2.0 
octene-1 7.8 l-8 

Using the values for octene-1, values of rn have been calculated from eq. 4 
and compared with those determined by me asuring the amount of octane 
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Fig. 1. The reciprocal initial rate of CO absorption <l/~-Co> vs. <[CO1 /CHCo<CO)41) at 15OC in heptme 
solution under CO between 0.5 and 3 bar total pressure in the presence of Co2(CO)g for octene-1 (0) and 
for heptene-1 <+). 

formed directly by GLC. The reasonable agreement between the calculated and 
---~..-?.A _ _.^l__.-... z- -I.----- f- IT:- 0 lllt3i13~~u l H vill,.,k?a lb sIlt_,w11 111 ,? ‘g. A. 

The mechanism proposed is obviously not the only one which fits the kinetic 

r,x lrJ5(mol Iqmiri’) 

(determined ) 

Fig. 2. Comparison of the experimental and calculated initial rates of hydrogenation <J-H> for octene-1. 
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data, but at the present level of knowledge further speculation is unwarranted. 
It is important to note the apparently general catalytic role of COAX in these 
reactions of HCO(CO)~ [2,3 3 which require the loss of a CO ligand from 
HCO(CO)~. Obviously, more work is needed to determine the exact way by 
which COAX exerts its influence. 

Our experiments provide quantitative support for the widely accepted con- 
clusion from qualitative studies of both catalytic and stoichiometric hydro- 
.formylations that the ratio of hydrogenation to carbonylation increases with 
the HCO(CO)~ concentration and decreases with the CO concentration, and 

-~___-_L~_----_L’_-__ _S?fir\ _--3 IT0_Ifi_\ expiain this effect in terms of the compecmg reacnons 01 bu ana ~LO(LUJ~ 
with the intermediate alkylcobalt tricarbonyl. 

Prehminary experiments indicate a different kinetic picture for styrene as 
olefin; the results will be reported later. 
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